217. The Structures of Inorganic Oxy-acids : The Crystal Structure of Selenic Acid.

By M. BAILEY and A. F. WELLS.

The crystal structure of anhydrous selenic acid, H_2SeO_4 , has been determined. The crystals are orthorhombic: a = 8.52, b = 8.17, c = 4.61 A., with 4 molecules in the unit cell. The space-group was taken as P2,2,2, though three very weak reflexions (700, 090, and 001) were observed on heavily-exposed photographs. The structure consists of tetrahedral SeO₄ groups (mean Se-O, 1.61 A.), each joined by four O-H-O bonds (lengths 2.61 and 2.68 A.) to four neighbouring groups to form puckered layers parallel to (100).

In describing the crystal structure of the orthorhombic form of selenious acid, H_2SeO_3 (J., 1949, 1282), we remarked that very little is known of the structures of crystalline oxy-acids H_mXO_n , the only other structure which had been determined being that of α -iodic acid (Rogers and Helmholz, J. Amer. Chem. Soc., 1941, 63, 278). When these acids are classified according to the value of the H: O ratio, $r_{H:0}$, they fall into four classes: (a), $r_{H:0} < \frac{1}{2}$, e.g., HIO₃, $H_2S_2O_7$;

The crystal structure of selenic acid projected on (001). The small black circles represent Se atoms. The puckered layers of SeO₄ groups linked by O-H-O bonds (heavy broken lines) are perpendicular to the plane of the paper. The pairs of short O-H-O bonds form links to oxygen atoms of SeO₄ groups situated above and below those shown.

(b), $r_{\rm H:0} = \frac{1}{2}$, e.g., H_2SO_4 , H_2SeO_4 ; (c) $1 > r_{\rm H:0} > \frac{1}{2}$, e.g., H_2SeO_3 , H_3PO_4 , and (d) $r_{\rm H:0} = 1$, e.g., H_3BO_3 , H_6TeO_6 . Since the hydrogen atoms link up the XO_n groups in these crystals by means of O-H-O bonds, as in "acid-salts" such as NaHCO₃ and KH₂PO₄, the ratio $r_{\rm H:0}$ determines the type of hydrogen-bonded network. If $r_{\rm H:0} = \frac{1}{2}$ there can be one O-H-O bond to each oxygen atom, as is found in crystals of KH₂PO₄ and (NH₄)₂H₃IO₆, and if $r_{\rm H:0} = 1$ there can be two O-H-O bonds to each oxygen atom, as in crystalline H₃BO₃. In KH₂PO₄ the hydrogen-bonded network [H₂PO₄]^m is a three-dimensional framework, in the interstices of which the K⁺ ions are situated. It was pointed out in the earlier paper that the structure of crystalline H₂SO₄ may be closely related to this [H₂PO₄]^m framework in KH₂PO₄ and isomorphous salts.

As an example of an oxy-acid H_2XO_4 , selenic acid was chosen in preference to sulphuric acid, with which it is likely to be isomorphous, since it is solid at room temperature. Owing to their

relatively high scattering power for X-rays, the selenium atoms can be readily located, but for the same reason the determination of the precise positions of the oxygen atoms is rendered more difficult. More accurate hydrogen-bond lengths could probably be obtained from a study of crystalline sulphuric acid. However, the crystal structure of anhydrous selenic acid has now been determined with sufficient accuracy to indicate without ambiguity the nature of the hydrogen-bonded network. Each tetrahedral SeO₄ group is linked by four O-H-O bonds to four neighbouring groups to form puckered layers which are viewed end-on in Fig. 1. (It is interesting that the orthorhombic form of selenious acid also has a layer structure.) A projection of the crystal structure of selenic acid normal to the plane of the layers is very similar to that of the $[H_2PO_4]_n^m$ framework of KH₂PO₄, as is seen from Fig. 2. In the latter crystal,

(a) Projection on (100) of one layer of the crystal structure of selenic acid.

(b) Projection on (001) of the structure of KH_2PO_4 .

however, this hydrogen-bonded framework extends indefinitely in three dimensions, in contrast to the layer structure of H_2SeO_4 .

The Crystal Structure of Selenic Acid.

An aqueous solution of selenic acid was prepared by treating an aqueous suspension of silver selenite with the calculated quantity of bromine and filtering off the silver bromide. The anhydrous acid was obtained by distilling off the water under reduced pressure, the temperature being taken finally to 150° . It was not possible to grow suitable crystals from the molten anhydrous acid, and the method adopted was to allow a little moisture to enter the stoppered tube which was then warmed slightly. On cooling, needles elongated along the c axis were obtained. For the X-ray work needles (or portions of needles) were quickly transferred to thin-walled glass capillaries previously sealed at one end, the other end being sealed when the crystal had been suitably oriented.

Unit Cell and Space-group.—Oscillation photographs taken with the crystal rotating about the principal axes showed that the crystals are orthorhombic. Zero layer-line Weissenberg photographs were taken about the *a* and *b* axes, and zero and first layer-line photographs about the *c* axis, all with Cu- K_a radiation. The cell dimensions are: $a = 8.52 \pm 0.02$ A., b = 8.17 ± 0.02 A., and $c = 4.61 \pm 0.01$ A., and this cell contains 4 molecules of H₂SeO₄ [density: calc., 3.00 g./c.c.; obs. (Landolt-Börnstein), 2.95 g./c.c.]. The systematic absences are the odd orders of h00, 0k0, and 00l, except that very weak reflexions 700, 090, and 001 were observed on photographs of very long exposure. These have been neglected, and the space-group taken as P2,2,2. Intensities were estimated visually by using the multiple film method and comparison with a time-calibrated scale of exposures, and they were converted into structure amplitudes by applying the appropriate correction factors.

Determination of Structure.—Apart from the hydrogen atoms (which cannot be located directly from the X-ray data), there are five sets of atoms (Se, O_1 , O_2 , O_3 , and O_4) in four-fold general positions xyz, etc. The co-ordinates of the selenium atoms were determined first.

(a) Selenium co-ordinates. A close-packed arrangement of SeO₄ groups was considered probable, and would require x and y co-ordinates for Se of approximately $\frac{3}{8}$ and $\frac{1}{4}$, respectively. The intensities of the h00 and 0k0 reflexions were consistent with these values. The approximate value of z_{Se} and more accurate values of x_{Se} and y_{Se} were obtained from F²-projections on (001) and (010). From the structure amplitudes of high-order reflexions and later Fourier projections the best Se co-ordinates were found to be : $x_{\text{Se}} = 0.369$, $y_{\text{Se}} = 0.212$, and $z_{\text{Se}} = 0.563$.

Electron-density projected on (001) showing selenium atoms surrounded by four oxygen atoms.

(b) Oxygen x and y co-ordinates. The structure was first projected along the c axis because (1) overlapping of atoms is less likely owing to the short length of this axis, and (2) errors due to absorption are smaller for (hk0) than for (h0l) or (0kl) reflexions when the crystals are needles elongated along the c axis. The origin for c-axis projections was taken at the point $(\frac{1}{4}, 0, 0)$ about which the projection is centro-symmetrical. The signs of 57 structure amplitudes were determined, the selenium co-ordinates given above being used, and these terms were used for the first projection. Successive refinements were carried out with an artificial temperature factor, $e^{-2[(\sin\theta)/\lambda]^{4}}$ applied to F_{obs} , to reduce errors due to the slow convergence of the series. The final projection of this set is shown in Fig. 3. The resolution and regularity of the oxygen peaks was not satisfactory, and a further synthesis was therefore computed by using the actual values of $F_{obs.}$ including values of F_{Se} for planes outside the range of the photograph having spacings down to 0.5 A. This appeared reasonable because the Se co-ordinates are known fairly accurately and because the oxygen scattering is negligible at high angles. The diffraction effects around the Se atoms which can be seen in Fig. 3 were considerably reduced in this projection, but the contours of the oxygen peaks were still rather irregular.

The final x and y co-ordinates were derived from projections for which the series was made much more rapidly convergent by using only that part of each observed F_{hk0} which was due to the oxygen atoms. The selenium contributions were calculated using the normal *f*-curve modified by a temperature factor $e^{-0.5[(\sin\theta)/\lambda]^2}$ appropriate to this structure and were subtracted (algebraically) from the respective F_{hk0} 's which had been converted approximately into absolute values by comparison with calculated values. The resulting F_{hk0} 's should then correspond to the selenic acid structure from which the Se atoms have been removed. The projection obtained in this way is shown in Fig. 4.

(c) Oxygen z co-ordinates. The projections of the structure on (010) and (100) gave only approximate oxygen co-ordinates because of overlapping of the atoms and probably also because of inaccurate intensity data due to absorption. (Crystals used for [a] and [b] axis photographs were elongated along [c]; it was found impossible to cut equidimensional portions of crystals owing to cleavage(s) along the needle direction.) The oxygen z co-ordinates obtained from these projections were refined by line syntheses normal to (001), applying an artificial temperature factor $e^{-4[(sin\theta)/\lambda]^2}$ to the values of $F_{obs.}$. For the calculation of phase angles the z

Electron-density projection [on (001)] showing oxygen atoms only. The small black circles indicate the positions of the selenium atoms.

co-ordinates of the oxygen atoms were taken as the means of the values obtained from the (010) and (100) projections. The final atomic co-ordinates, expressed as fractions of the cell edges, are :

	x/a.	y/b.	z/c.		x/a.	y/b.	z/c.		x/a.	y/b.	z/c.
Se	 0.369	0.212	0.563	О,	0.285	0.108	0.321	O,	0.415	0.390	0.411
0,	 0.513	0.128	0.714	0,	$\dots 0.235$	0.252	0.808	•			

The structure amplitudes calculated from these co-ordinates and incorporating a temperature factor $e^{-0.5[(\sin\theta)/\lambda]^2}$ are listed in Tables I—III. The atomic f curves used were those of the International Tables (Vol. 2, p. 571) for Se and O atoms, the H atoms being neglected. For the *hk*0 reflexions the value of the function $\Sigma(F_{obs.} - F_{calc.})/\Sigma F_{obs.} = 0.12$ and, for *hkl* reflexions, 0.16. It has not been calculated separately for *h0l* or 0*kl* reflexions for which the values of $F_{obs.}$ are less reliable owing to absorption. Values of $F_{obs.}$ which are seriously reduced owing to absorption are enclosed in parentheses in Tables II and III.

Description of the Structure.—The general nature of the structure has already been mentioned. The distances between oxygen atoms of different SeO₄ groups fall into two groups. Four of the O-O contacts of any SeO₄ groups (two of 2.61 A. and two of 2.68 A.) are much shorter than the rest, which are 2.95 A. or more. The number of these short O-O distances is the number of

TABLE I.

Observed and calculated structure amplitudes (hk0).

[Origin taken at $(\frac{1}{4}, 0, 0.]$

				-	0		-				
	Fobs.	$\mathbf{F}_{\text{calc.}}$.		Fobs.	Fcale.		Fobs.	F _{calc.} .		Fobs.	Fcalc.
020	66	-61	310	11	+ 9	510	14	-10	800	34	+33
040	10	+10	320	16	-14	520	10	-10	810	10	+5
060	14	-17	330	12	+10	530	29	+21	820	30	-28
080	4	+ 4	340	25	+24	540	21	-21	830	18	-18
0.10.0	17	÷19	350	32	-35	550	31	-24	840	15	+16
110	11	. 15	360	28	-28	560	27	+27	850	9	+ 9
190	11	+10	370	22	+21	570	25	+22	860	3	- 3
120	21	24	380	22	+21	580	7	<u> </u>	870	5	+ 6
140	20	- 20	390	8	<u> </u>	590	17	-17	010	6	6
140	20	+ 20	3.10.0	10		600	6	_ 9	020	ă	10
100	24	+20	400	21	_ 30	610	42	2 3	920	16	14
170	20	-21	400	0	- 30	620	7	+ 50 + 5	940	ĨĞ	- 14
120	12	- 22	410	24	 31	630	34	- 30	950	20	1.21
100	10	+17	420		T J	640	5	- 3	960	-4	- 6
1 10 0	10	12	40	25	. 94	650	19	- J - 13		T	U U
1.10.0	10	-13	440	20	- 24	660	10	- 5	10.00	9	+ 4
200	13	+10	400	>2	T 0	670	5	 3	10.10	21	-18
210	53	-62	400	> 2	1	690	5	J	10.20	12	-10
220	14	-14	470	< 0 14	- I - 15	080	0	T T	10.30	16	+16
230	20	+25	480	14	+ 10	710	4	+ 4	10.40	10	+11
240	13	+14	490	4	+ 2	720	20	+16			
250	11	-11				730	12	-10			
260	6	- 7				740	27	-20			
270	3	+ 1				750	13	+13			
280	<3	+ 1				760	25	+21			
290	14	+15				770	8	-10			
2.10.0	$<\!2$	- 2				780	16	-19			

TABLE II.

Observed and calculated structure amplitudes (hkl).

				[Orig	in taker	1 at (0, 0), 0).]	. ,			
	Fobs.	Fcalc.	а.		Fobe.	Fcale.	a.		Fobs.	Fcalc.	a.
011	43	59	270°	301	5	5	90°	601	30	30	270°
021	15	17	0	311	9	9	168	611	15	12	323
031	15	19	90	321	13	10	72	621	31	27	81
041	15	15	180	331	22	19	356	631	19	16	136
051	8	8	270	341	25	27	215	641	19	17	259
061	9	9	0	351	24	24	185	651	9	6	318
071	<4	1	90	361	21	24	356	661	5	2	74
081	6	8	180	371	22	22	13	671	8	8	198
091	11	14	90	381	12	15	35	681	10	8	100
0.10.1	6	7	0	391	15	16	201	701	28	25	90
101	16	18	90	3.10.1	9	8	329	711	15	13	211
111	13	17	17	401	6	4	270	721	16	12	245
191	19	19	332	411	41	43	98	731	$\overline{22}$	18	157
131	34	35	201	421	14	10	139	741	$\overline{12}$	11	357
141	24	25	166	431	29	30	273	751	$\overline{22}$	19	350
151	27	29	27	441	15^{-1}	ii	329	761	9	13	205
161	23	24	5	451	17	12	65	771	23	19	175
171	16	19	173	461	16	12	181	781	9	10	30
181	14	18	182	471	4	2	123	801	7	2	90
191	9	13	3	481	15	12	4	811	28	23	268
1.10.1	14	12	15	491	13	12	261	821	11	10	318
901	(22)	63	90	501	Q	8	270	831	19	19	86
201	(33)	5	218	511	15	ıĭ	278	841	ĩõ	ĩĩ	135
211	23	45	298	521	22	17	152	851	- 8	-7	247
221	10	10	357	531	ĩĩ	- 9	346	861	6	6	20
201	14	18	79	541	$\hat{28}$	23	333	871	5	4	315
251	13	13	185	551	23	22	173	001	-1	1	90
261	- 9	13	213	561	22	22	172	011	19	7	50
271	n	13	13	571	14	15	358	091	12	19	352
$\overline{281}$	7	6	248	581	21	19	7	021	10	ĨĞ	141
291	7	8	194	591	8	9	144	941	19	16	179
2.10.1	20	18	75					951	8	8	356
								10.01	» ۵۱	90	00
								10.01	21	20	90 60
								10.11	20	10	960
								10.21	10	19	284
								10.31	12	14	80
								10.41		11	00

TABLE III.

Observed and calculated structure amplitudes (hol and 0kl). (For hol origin is taken at (0, 0, 1) and for 0kl at (0, 1, 0)]

		լու	n wor ould	m is tar	ten at (0,	, v , z) and	101 044,	at (0, I ,	0).]		
	Fobs.	Fcalc.		Fobs.	F _{caic} .		Fobs.	$\mathbf{F}_{calc.}$		$F_{obs.}$	\mathbf{F}_{calc} .
002	14	-15	004	5	- 1	012	14	+12	014	10	+12
102	10	+ 7	104	22	-31	022	18	+20	024	2	+ 1
202	5	- 4	204	3	+ 2	032	(17)	+23	034	(14)	+20
302	16	+21	304	7	-10	042	(10)	+18	044	(<3)	+1
402	(22)	+43	404	4	+ 4	052	(17)	+22	054	(13)	+21
502	(17)	-31	504	(11)	+18	062	`2	- 1	064	2	- 1
602	`2́	- 3	604	(<2)	+ 4	072	24	+20	074	22	+24
702	6	- 7	704	`9´	+11	082	12	-12			
802	16	-13	804	2	+ 2	092	20	+16	015	10	+12
902	17	+18							025	(9)	-16
10.02	7	+ 7	105	11	+18	013	11	-12	035	(8)	+13
		•	205	9	-11	023	18	-19	045	13	-16
103	15	-14	305	(10)		033	(13)	-24	055	6	+ 8
203	9	-10	405	(<2)	- 5	043	(14)	-23			
303	22	+32	505	`6′	- 8	053	`(6)	-12			
403	4	<u> </u>				063	19	-12			
503	(8)	+13				073	3	+ 3			
603	(7)	+15				083	25	-24			
703	$\mathbf{\hat{20}}'$	-20				093	3	+ 3			
803	14	- 9						-			
903	7	— 9									

hydrogen atoms in the crystal and they are therefore regarded as indicating O-H-O bonds. These link each SeO₄ group to four neighbouring groups to form puckered layers parallel to (100), as shown in Figs. 1 and 2. Including the three oxygen atoms of the same SeO₄ group, the numbers of neighbours up to a distance of 3.5 A. are as follows: O₁, 10; O₂, 12; O₃ and O₄, 11.

The interatomic distances and interbond angles within the SeO_4 group are :

$\begin{array}{c} \text{Se-O}_1\\ \text{Se-O}_2\\ \text{Se-O}_3\\ \text{Se-O}_4\\ \text{Se-O}_4 \end{array}$		1.57 A. 1.57 1.64 1.66 1.61	$\begin{array}{c} O_1 - O_2 \\ O_1 - O_3 \\ O_1 - O_4 \\ O_2 - O_3 \\ O_2 - O_4 \end{array}$		2.66 A. 2.61 2.68 2.66 2.59 2.64	$O_1 - Se - O_2$ $O_1 - Se - O_3$ $O_1 - Se - O_4$ $O_2 - Se - O_3$ $O_2 - Se - O_4$	······	116° 109 112 112 106
	Mean	1.61	0 3- 04	••••••	2.64	O_3 -Se- O_4	•••••	106
				Mean	2.64		Mean	110°

The Se-O distance of 1.61 A. in SeO₄²⁻ may be compared with the values 1.73 A. and 1.78 A. in crystalline SeO₂ (McCullough, J. Amer. Chem. Soc., 1937, 59, 789), 1.72 A. in the orthorhombic form of H₂SeO₃ (Wells and Bailey, *loc. cit.*), and 1.61 A. in SeO₂ vapour (Palmer, J. Amer. Chem. Soc., 1938, 60, 1309). It is interesting that the bond length Se-O is the same in the SeO₂ molecule as in the SeO₄²⁻ ion of H₂SeO₄, whereas for 3-covalent Se in crystalline SeO₂ and H₂SeO₃ the distance is appreciably greater. In the case of sulphur the S-O distance is the same in the So₂²⁻ ion (1.45 A.) but also the same for 3-covalent sulphur in the S₂O₅²⁻ ion (1.45 A.) (Zachariasen, Physical Rev., 1932, 40, 923). The value, 1.39 A., found in the SO₃³⁺ ion in Na₂SO₃ (Zachariasen and Buckley, *ibid.*, 1931, 37, 1295) may be rather less accurate than the value from the carefully determined K₂S₂O₅ structure. This difference between sulphur and selenium is not unexpected, for there are many differences between the oxygen chemistries of these two elements; for example, whereas sulphur and tellurium form trioxides, selenium does not, and it is interesting that the next element in the same row of the Periodic Table, bromine, also does not form many types of oxy-compound formed by chlorine and iodine.

IMPERIAL CHEMICAL INDUSTRIES LIMITED, RESEARCH LABORATORIES HEXAGON HOUSE, MANCHESTER, 9.

[Received, October 6th, 1950.]